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It has recently become possible to form molecules in ultracold gases of trapped alkali metal
atoms. Once formed, the molecules may undergo elastic, inelastic and reactive collisions.
Inelastic and reactive collisions are particularly important because they release kinetic energy
and eject atoms and molecules from the trap. The theory needed to handle such collisions is
presented and recent quantum dynamics calculations on ultracold atom–diatom collisions of
spin-polarized LiþLi2, NaþNa2 and KþK2 are described. All these systems have potential
energy surfaces on which barrierless atom exchange reactions can occur, and both inelastic
and reactive rates are very fast (typically kinel >10�10 cm3 s�1 in the Wigner regime).
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1. Introduction

There have been enormous recent advances in our ability to produce and trap samples
of cold molecules (below 1 K) and ultracold molecules (below 1mK). Molecules such as
NH3, OH and NH have been cooled from room temperature to the milli-Kelvin regime
by a variety of methods including buffer-gas cooling [1, 2] and Stark deceleration [3, 4].
Molecules have also been produced in ultracold atomic gases by photoassociation [5, 6]
and magnetoassociation [5, 7] of pairs of atoms. Long-lived molecular Bose–Einstein
condensates have been produced for dimers of fermionic alkali metal atoms [8–10],
and the first signatures of ultracold triatomic [11] and tetraatomic [12] molecules
have been observed.

Cold and ultracold molecules have many possible applications. High-resolution
spectroscopy on cold molecules may allow the measurement of fundamental physical
properties such as the electric dipole moment of the electron [13], the energy differences
between enantiomers [14, 15] and the time-dependence of the fine-structure constant [16].
In addition, since molecules have a much richer energy level structure than atoms,
they offer many new possibilities for quantum control. Perhaps most importantly,
dipolar molecules interact with one another much more strongly and at longer range
than atoms. Dipolar molecules have been proposed as qubits for quantum computers
[17] and dipolar quantum gases are predicted to exhibit a range of novel features [18].

In a recent article [5], we reviewed the current state of the art of molecule production
in ultracold atomic gases. Other authors have reviewed the cooling of molecules
from near room temperature [3, 4] and the theory of collisions of such directly
cooled molecules [19–21]. The present article is complementary to these and focusses
on recent theoretical work on the collisions of alkali metal dimers formed in ultracold
gases.

2. Experiments on ultracold molecule formation and collisions

There are two main methods used to form molecules in ultracold atomic gases. In
photoassociation [5, 6], a pair of atoms undergoes a spectroscopic transition from an
unbound atomic state very close to threshold to a bound molecular state. In magneto-
association, also known as Feshbach resonance tuning [5, 7], the transition is accom-
plished by guiding the atom pair adiabatically across an avoided crossing between an
unbound state and a molecular state.

Feshbach resonance tuning always produces molecules in very highly excited states,
usually the highest vibrational state that exists in the diatomic potential well.
Photoassociation also usually produces molecules in very high vibrational states,
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because they are the ones that have the best Franck–Condon overlap with the free-atom
states.

Ultracold molecules are initially formed in the presence of ultracold atoms and can
collide with them. For molecules in vibrationally excited states, there is the possibility
of vibrationally inelastic collisions,

M2ðvÞ þM�!M2ðv
0< vÞ þM, ð1Þ

where v is the vibrational quantum number. Since the trap depth is usually much less
than 1K, such collisions always release enough kinetic energy to eject both collision
partners from the trap. If the molecular density is high, there is also the possibility of
inelastic molecule–molecule collisions,

M2ðvÞ þM2ðvÞ�!M2ðv
0< vÞ þM2ðv

00 � vÞ: ð2Þ

Molecules are not destroyed in inelastic collisions, but they are lost from the trap and
are no longer ultracold.

The initial experiments on molecule formation by Feshbach resonance tuning worked
with bosonic isotopes of alkali metals [22–25]. They found that the molecules were
lost from the trap on a timescale of milliseconds. The loss was attributed to vibration-
ally inelastic atom–molecule collisions with relaxation rates around 10�10 cm3 s�1.
For the case of 85Rb2 [22], recent work has suggested that the loss may in fact be
due to spontaneous molecular dissociation by collisionless spin relaxation [26, 27].
However, for the other systems [23–25] the molecules are formed in truly bound
states and cannot decay without collisions. Mukaiyama et al. [28] have recently mea-
sured the trap loss rate for 23Na2 molecules formed by Feshbach resonance tuning
and obtained an atom–molecule rate coefficient kloss ¼ 5:1� 10�11 cm3 s�1 for mole-
cules in the highest vibrational state.

Fermion dimers formed by Feshbach resonance tuning are a very special case. In
mid-2003, four groups independently reported within a very short time that dimers of
fermionic 6Li [29–31] and 40K [32] could be remarkably stable to collisions.
Cubizolles et al. [30] and Jochim et al. [31] showed that the lifetime was particularly
large close to a Feshbach resonance, where the atom–atom scattering length is large
and positive. By the end of 2003, three different groups [8–10] had succeeded in creating
long-lived molecular Bose–Einstein condensates of fermion dimers.

Petrov et al. [33, 34] analysed the stability of fermion dimers in terms of the long-
range form of the wavefunction. In the case where the atom–atom scattering length
a is much larger than the range of the atom–atom potential re, they showed that
both atom–molecule and molecule–molecule inelastic collision rates are suppressed
by Fermi statistics. However, their derivation applies only to molecules that are
in long-range states, with a wavefunction that depends on the scattering length a,
�ðrÞ � expð�r=aÞ. As will be discussed in more detail below, Cvitaš et al. [35] have
shown computationally that there is no systematic suppression of the atom–molecule
inelastic rate for fermion dimers in low-lying vibrational levels, even when a is large
and positive.
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Relaxation processes have also been studied for molecules formed by photoassocia-
tion. Wynar et al. [36] formed 87Rb2 molecules in the second-to-last vibrational level
of the ground excited state by stimulated Raman adiabatic passage (STIRAP). They
estimated an upper bound of kloss ¼ 8� 10�11 cm3 s�1 due to inelastic atom–molecule
collisions. Staanum et al. [37] investigated inelastic collisions of rovibrationally
excited Cs2 (

3�þ
u ) in collisions with Cs atoms in two different ranges of the vibrational

quantum number v by monitoring trap loss of Cs2. They obtained atom–molecule
rate coefficients close to 1:0� 10�10 cm3 s�1 for both v¼ 4 to 6 and v¼ 32 to 47.
Zahzam et al. [38] carried out similar work for different rovibrational states of 3�þ

u ,
and also considered molecules in the 1�þ

g state and molecule–molecule collisions.
They obtained rate coefficients of 2:6� 10�11 cm3 s�1 and 1:0� 10�11 cm3 s�1 in the
atom–atom and atom–molecule cases respectively, both with quite large error bounds.

Because of the collisional losses for excited vibrational levels, intense efforts are
under way to produce ultracold alkali metal dimers in low-lying levels (and ultimately
in the ground vibronic state). The process of transferring molecules from atomic
or near-dissociation molecular states, with probability density at long range, to
low-lying states, with probability density near the diatomic equilibrium distance re, is
sometimes called r-transfer. It can in principle be achieved either by using many
photons to accomplish the transfer in several stages [39] or by using tailored ultrafast
laser pulses [40–42]. In favourable cases, and particularly for heteronuclear alkali
metal dimers [43, 44], it may be possible to produce molecules in their vibrational
ground state by two-photon processes via excited states with mixed singlet and
triplet character. Sage et al. [45] have recently succeeded in creating ultracold RbCs
molecules (T � 100 mK) in their vibronic ground state using a four-photon process.
The production rate in the current experiments is only 500molecules/s, but work is
under way to increase it.

Inspired by the recent progress in experimental techniques for producing and study-
ing ultracold molecules, we have collaborated with Jean-Michel Launay and coworkers
at the University of Rennes to produce a series of theoretical studies [35, 46–52] on
interactions and collisions between spin-polarized alkali-metal atoms and molecules.
In particular, ultra-low-energy collisions were studied for NaþNa2 [46, 48], LiþLi2
(isotopically homonuclear [35, 49] and heteronuclear [50]), and KþK2 [51].
Collisions between alkali-metal dimers and atoms present several new theoretical
challenges that are not present for collisions of stabler molecules. The remainder of
this review will focus on describing this work and drawing general conclusions from it.

3. General aspects of alkali metal dimer collisions

The atoms in an ultracold quantum gas of S-state atoms are in states labelled by the
electron spin s, the nuclear spin i, and the total angular momentum f. Since there is
usually a magnetic field present, the states are also labelled by mf, the projection of f
along the field. Of particular interest here are spin-stretched states, where f ¼ fmax ¼

iþ s and jmfj ¼ f. From a theoretical point of view, collisions of atoms and molecules
in spin-stretched states are simpler than others, because they take place entirely on high-
spin potential energy surfaces. For alkali metal atoms with s ¼ 1

2, these are triplet curves
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(S¼ 1) for atom–atom collisions and quartet surfaces (S ¼ 3
2) for atom–molecule

collisions and three-body recombination. For atoms in non-spin-stretched states, singlet
dimer curves and doublet trimer surfaces are also required. Our work so far has
focussed on spin-stretched states.

The lowest quartet state of the alkali metal trimers, which correlates with ground-
state atoms (2S) and molecules in their lowest triplet state (3�þ

u ), is designated ð14A0Þ.
At first sight it might be expected that three parallel electrons in s orbitals would not
form significant chemical bonds. If this was the case, then pairwise additivity would
be a good approximation and the potential energy surface would be given by

Vðr12, r23, r13Þ �
X3
i<j

VdimerðrijÞ: ð3Þ

The potential energy curve for the lowest triplet state is reasonably well known for
many of the alkali metal dimers [53–56]. Pairwise-additive model potentials have
been extensively used in theoretical studies of three-body recombination [57–60].

As will be seen below, pairwise additivity is actually quite a poor approximation
for the alkali metals. Nevertheless, it gives some insights into the energetics of atom–
molecule collisions. If the dimer well depth is " at an atom–atom distance re, then for
a pairwise-additive surface the energies of various important arrangements of three
atoms are

. atom M well-separated from diatom M2 with bond length re,

VðrÞ ¼ Vðre,1,1Þ ¼ �"

. linear trimer M3 with bond length re,

VðrÞ ¼ Vðre, re, 2reÞ � �2"

. triangular trimer M3 with bond length re,

VðrÞ ¼ Vðre, re, reÞ ¼ �3":

The topology of the lowest quartet potential energy surface of an alkali-metal trimer
is thus quite simple; the global minimum is at an equilateral triangular configuration
(point group D3h) and there is a saddle point at a symmetric linear configuration
(D1h). The inclusion of non-additivity deepens the linear and (especially) triangular
trimer wells, but does not change the overall conclusions.

The potential energy surfaces are such that barrierless atom-exchange reactions can
occur. All configurations of the trimer M3 are lower in energy than the separated
atomþ diatom collision partners (and products). Once the collision complex M3 has
been formed, any one of the three atoms can depart to form products. Even when
the products are indistinguishable from the reactants, all three of these ‘arrangement
channels’ must be taken into account in the collision dynamics. This has two
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major consequences. First, a reactive scattering approach (rather than an inelastic scat-
tering approach) must be used in the dynamics calculations. Secondly, the scattering
calculations must be done on a fully three-dimensional potential energy surface. This
is not the case for non-reactive scattering, where the products and reactants are
confined to just one arrangement, and two-dimensional calculations (with the diatomic
bond length kept fixed at the dimer equilibrium geometry) or quasi-three-dimensional
calculations (where the diatomic bond length is varied only slightly around the dimer
equilibrium geometry) are usually used.

The major focus of interest is in collisions that release kinetic energy and thus lead to
trap loss. These are typically vibrational relaxation processes of the type

M2ðvÞ þM�!M2ðv
0 < vÞ þM: ð4Þ

However, if the three atoms are identical it is not possible to distinguish between inelas-
tic processes and reactive processes. We therefore use the general term quenching to
describe collisions that produce a change in the vibrational (or rotational) quantum
number and release kinetic energy.

4. Potential energy surfaces

4.1. Non-additive forces

Accurate quantum scattering calculations require accurate potential energy surfaces.
Higgins et al. [61] showed in 2000 that the quartet state of Na3 exhibits strong non-addi-
tive forces that increase the well depth of the equilateral trimer by 59% and decrease the
Na-Na bond length from 5.2 Å in the triplet dimer to 4.4 Å in the quartet trimer. We
therefore carried out a systematic study [47] to investigate such effects for the whole
series of homonuclear alkali-metal trimers. Ab initio electronic structure calculations
were performed using a single-reference restricted open-shell variant [62] of the
coupled-cluster method [63] with single, double and non-iterative triple excitations
[RCCSD(T)]. Medium/large-size basis sets were used for the alkali metal atoms as
described in [47], and the full counterpoise correction of Boys and Bernardi [64] was
employed to compensate for basis-set superposition errors. All the ab initio calculations
were performed using the MOLPRO package [65].

The results are summarized in table 1, which shows the equilibrium bond lengths re
and potential depths Vmin for alkali-metal dimers and equilateral (D3h) trimers, together
with the corresponding quantities rsp and Vsp for the linear (D1h) saddle points.
The three-body non-additive contributions V3 are also given. Figure 1 shows the addi-
tive and non-additive potential energy curves for D3h geometries.

All the trimers show quite strong non-additive effects. The quartet trimers all have
equilibrium interatomic distances (at D3h geometries) that are substantially shorter
than those of the triplet dimers, by an amount that decreases down the series from
1.07 Å in Li3 to 0.59 Å in Cs3. The trimer potentials are all correspondingly deeper
than pairwise sums of dimer potentials, by a factor of 1.3 to 1.5 for the heavier alkali
metals (Na to Cs) but a factor of more than 4 for Li.
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Figure 1. RCCSD(T) interaction energies of spin-polarized alkali trimers at D3h geometries (a) full
potentials including non-additive contributions; (b) additive potentials. Reproduced from Soldán et al. [47].

Table 1. RCCSD(T) values of reðÅÞ, rspðÅÞ,Vmin ¼ �Deðcm
�1
Þ,Vspðcm

�1
Þ, and V3ðcm

�1
Þ for spin-polarized

alkali dimers and trimers.

Dimer Trimer D3h Trimer D1h

re Vmin re Vmin V3 rsp Vsp V3

Li 4.169 �334.046 3.103 �4022 �5260 3.78 �968 �354
Na 5.214 �174.025 4.428 �837 �663 5.10 �381 �27
K 5.786 �252.567 5.084 �1274 �831 5.67 �569 �52
Rb 6.208 �221.399 5.596 �995 �513 6.13 �483 �15
Cs 6.581 �246.786 5.992 �1139 �562 6.52 �536 �32

Molecular collisions in ultracold atomic gases 7

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
0
4
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



The size of the non-additivity is at first sight quite surprising in chemical terms.
It contrasts with the situation for the rare gas trimers, where the non-additive contribu-
tions are only 0.5% to 2.5% [66, 67] and produce a weakening of the binding at
equilateral geometries rather than a strengthening as in table 1.

The interaction potentials can be decomposed into self-consistent field (SCF) and
correlation contributions. For the triplet alkali dimers, as for the rare gas dimers,
the SCF potentials are repulsive and the main attractive forces arise from interatomic
correlation (dispersion). However, this similarity does not extend to the trimers.
For the rare gases, most of the non-additivity comes from the dispersion interaction.
The leading long-range term in this is the Axilrod–Teller–Muto (ATM) triple-dipole
term [68, 69], which is repulsive near equilateral configurations but attractive near
linear configurations. For alkali metal atoms, by contrast, there is a large attractive
contribution to the non-additive energy that exists even at the SCF level. This occurs
because the alkali metals have vacant np orbitals that lie relatively close to the ns
orbitals.

The question then arises why the p orbitals contribute so strongly for the alkali metal
trimers but not the dimers. Soldán et al. [47] carried out a natural orbital analysis
for equilateral triangle geometries, and considered the contribution from radial
p orbitals (pointing towards the centre of the triangle) and from tangential p orbitals
(pointing around the ring). The radial p orbitals can form bonding and antibonding
molecular orbitals (MOs) of the same symmetry as those formed from the ns orbitals
(a01 and e0), while the tangential p orbitals can form a02 and e0 MOs. The sets of
MOs of the same symmetry interact, lowering the energy of the occupied MOs and
contributing to bonding. Soldán et al. showed that the dominant contribution to the
trimer bonding is from the tangential p orbitals. In chemical terms, this is essentially
sp hybridization. This mechanism does not occur for the alkali metal dimers, because
in that case the ‘tangential’ p orbitals form molecular orbitals of � symmetry that
cannot mix with � orbitals.

4.2. Global potential energy surfaces

It is relatively straightforward to generate potential energy surfaces for systems such as
the quartet alkali metal trimers by carrying out ab initio electronic structure calculations
at grids of points that sample the configuration space. We have carried out such
calculations for Li3 [35, 49] and K3 [51], using RCCSD(T) calculations as described
above for the linear and equilateral geometries. Colavecchia et al. [70] have also carried
out calculations for Li3, using a more complete treatment of the valence electron
correlation (full configuration interaction) but without correlating the core electrons.

A much more difficult problem is to generate a global potential energy surface from
a set of points. For quantum dynamics calculations, it is very important to represent
the potential-energy function smoothly and without oscillations between ab initio
points. If the resulting potential is to be capable of representing all the properties of
experimental interest (including atom–atom scattering lengths, dimer and trimer
bound states, atom–diatom collisions and three-body recombination), then it is very
important that the potential should dissociate properly into all possible sets of products
(atomþ diatom and three separated atoms) with the correct long-range behaviour.
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There are several coordinate systems that can be used for triatomic systems, including
hyperspherical coordinates, Jacobi coordinates, and bond-length coordinates. These are
by nomeans equivalent for interpolation purposes. In particular, grids of points in hyper-
spherical coordinates tend to include points in which two atoms lie very close together,
which hinders interpolation because polynomials with very high localized maxima tend
to have oscillations in other regions. Jacobi coordinates suffer from the same problem,
and also do not allow the full three-body exchange symmetry to be introduced in a
natural way. Fortunately, there is no need to represent the potential energy surface in
the same coordinate system as is used in the dynamical calculations. We therefore
chose to carry out electronic structure calculations on a grid of points in bond-length
coordinates ðr12, r23, r13Þ. We use the shorthand ðrÞ for this to simplify notation.

In order to represent the atom–diatom dissociation limits correctly, it is essential to
use a long-range representation in which the triatomic potential is decomposed into a
sum of additive and non-additive contributions,

VðrÞ ¼
X3
i<j

VdimerðrijÞ þ V3ðrÞ: ð5Þ

Provided V3ðrÞ ! 0 when any two of the atom–atom distances become infinite, this
guarantees that the correct diatomic potential is recovered in the atom–diatom limit.
However, low-energy scattering is very sensitive to long-range forces, so we also
require that the atom–diatom dispersion coefficients and their anisotropies are correctly
reproduced. This requires careful treatment of the long-range part of V3ðrÞ.

An important point is that, for a pairwise-additive potential in which the dimer
potentials have the correct long-range form �C6R

�6, the atom–diatom C6 coefficient
is isotropic (independent of Jacobi angle �). The anisotropy of the atom–diatom C6

coefficient comes entirely from non-additive forces. Cvitaš et al. [52] have therefore
investigated the relationships between three-body dispersion coefficients in the atom–
diatom and atom–atom–atom representations and derived formulae relating the
atom–diatom C6 and C8 coefficients and their anisotropies to three-body coefficients
arising from triple-dipole [68, 69], quadruple–dipole [71, 72] and higher-order multipole
[73, 74] terms.

A variety of representations can be used for interpolating dimer potentials. We have
used the reciprocal-power reproducing kernel Hilbert space method (RP-RKHS)
[75, 76]. With an appropriate choice of parameters [77], this gives a potential that has
the correct C6 and C8 dispersion coefficients.

At short range, different approaches were needed for K3 and for Li3. K3 is represen-
tative of the heavier alkali metals (Na to Cs) in that the non-additive potential is smaller
than the potential itself for most configurations. It is thus convenient to use equation (5)
directly with a global representation of V3ðrÞ. The details of the procedure are given
in [51] and [52], but in brief:

. a quantity V0
3ðrÞ is defined by subtracting out damped versions of the triple-

dipole and dipole–dipole–quadrupole terms from V3ðrÞ,

V0
3ðrÞ ¼ V3ðrÞ � VDDD

3, dampðrÞ þ VDDQ
3, dampðrÞ

h i
; ð6Þ
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. a function

gðrÞ ¼
r312r

3
23r

3
13

ð1þ cos2 �1Þ r
6
23 þ ð1þ cos2 �2Þ r

6
13 þ ð1þ cos2 �3Þ r

6
12

ð7Þ

is defined to eliminate the quadruple–dipole contribution to V3ðrÞ;
. the function V00

3ðrÞ ¼ gðrÞ � V0
3ðrÞ is interpolated using three-dimensional

RP-RKHS interpolation. V00
3ðrÞ is suitable for this (but V3ðrÞ and V0

3ðrÞ are
not) because V00

3ðrÞ takes a product form at long range, constant� r�3
12 r

�3
23 r

�3
31 ;

. V3ðrÞ is then rebuilt from V00
3ðrÞ at each interpolated point,

V3ðrÞ ¼
V00

3ðrÞ

gðrÞ
þ VDDD

3, dampðrÞ þ VDDQ
3, dampðrÞ

h i
: ð8Þ

The resulting potential energy surfaces for spin-polarized K3 [51] are shown in figure 2.
Note that the depth at D3h geometries is rather more than twice that at linear geome-
tries, whereas pairwise additivity would give a factor of 1.5.

Li3 required a different procedure, because in this case the potential minimum for the
trimer occurs at a distance that is high on the repulsive wall for the dimer. Because
of this, equation (5) would represent the interaction potential in this region as a differ-
ence between two very large quantities. Nevertheless, at long range a decomposition
according to equation (5) is essential. Under these circumstances, it is best to fit the
ab initio points directly to obtain a short-range function VSRðrÞ without imposing the
correct long-range behaviour. A switching function S(r) is then used to join this onto
the correct long-range form,

VðrÞ ¼ SðrÞVSRðrÞ þ ½1� SðrÞ�VLRðrÞ: ð9Þ

The switching function is 1 at short range but switches smoothly to zero at long range.
The long-range form VLRðrÞ is designed to be valid when any of the atom–atom
distances is large, and the procedure used to build in the correct three-atom and
atom–diatom dispersion coefficients is described in [52].

A further complication arises for Li3 because in this case there is a second potential
energy surface involved. As described above, the quartet state that correlates with three
ground-state (2S) atoms has 4A0 symmetry (4�þ at linear geometries). The second
state correlates with Li(2S)þLi(2S)þLi(2P) and has 4� symmetry at linear geometries.
It can cross the 4�þ state at linear geometries because it has different symmetry.
However, at non-linear geometries the 4� state splits into 4A0 and 4A00 components,
and the two 4A0 states mix and cannot cross. There are thus conical intersections at
linear geometries, and the avoided crossings produce double-minimum structures
at non-linear geometries as shown in the upper panel of figure 3. The line of conical
intersections produced a seam in the potential surface as shown in the lower panel.

Conical intersections exist for both symmetrical and unsymmetrical linear geometries
in quartet Li3, but for strongly unsymmetrical geometries the conical intersections
are high on the repulsive wall and will not affect the dynamics. However, for
near-symmetric linear geometries the seam dips to an energy of about �100 cm�1
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Figure 2. Cuts through the K3 quartet surface in valence coordinates. Upper panel: cut for a bond angle
of 60�, showing the global minimum at �1269 cm�1 and 5.09 Å. Lower panel: cut at collinear geometries;
the collinear minimum is at �565 cm�1 and 5.68 Å. Contours are labelled in cm�1. Reproduced from
Quéméner et al. [51].
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Figure 3. [Colour online] Cuts through the Li3 quartet surface in valence coordinates. Upper panel: cut for
a bond angle of 170�, showing the double-minimum structure due to avoided crossings at near-linear geo-
metries. Lower panel: cut at collinear geometries, showing the seam of conical intersections (red line) between
the 4�þ and 4� states. Reproduced from Cvitaš et al. [35].
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(relative to the energy of three free atoms) at r12 ¼ r23 � 3:1 Å. It is thus close to
the inner turning point for low-energy collisions between Li and Li2, and may have
significant consequences for the chemical dynamics. The conical intersection has
subsequently been characterized in more detail by Brue et al. [78].

5. Quantum dynamics calculations

5.1. Methodology

As described above, alkali metal atomþ diatom collisions require a fully reactive
scattering treatment, and at the energies of interest for cold molecules it is essential
to handle relative translation as well as internal motions quantum-mechanically.
Quantum reactive scattering calculations [79] can in general be performed using
either time-dependent or time-independent treatments. In recent work at higher energies,
time-dependent treatments based on wavepacket dynamics have been becoming increas-
ingly popular [80]. At ultralow energies, however, the time evolution of a wavepacket
is very slow, and propagating it until it reaches the asymptotic region requires an
impractical number of time steps. Furthermore, it is difficult to converge wavepacket
calculations at very low scattering energies, because the wave packet needs to be very
broad. We therefore chose to describe ultralow energy scattering in a time-independent
formalism.

There are many variants of time-independent reactive scattering theory. However,
some of them are unsuitable for the alkali metal trimers. As described above, the
strong non-additive three-body interactions for the alkali metal trimers make the
atom–atom distances at the trimer equilibrium geometry much shorter than those for
the dimers. The vibrational wavefunctions of a free dimer are centred around its equili-
brium bond length and are very small at the distances that correspond to the trimer
equilibrium. Because of this, the free dimer wavefunctions do not form a good basis
set for expanding the scattering wavefunctions in the region of the trimer equilibrium,
where the actual atom exchange takes place. This precludes the use of standard reactive
scattering packages such as the ABC program [81], which uses such basis functions and
has been widely used in studies of reactions such as FþH2 [82–84] and O(3P)þH2 [85]
at ultralow energies.

We thus chose to use a scattering formalism based on hyperspherical coordinates
�, �,� [86]: � is the hyperradius, which describes the size of the triangle formed by
the three atoms, while � and � are hyperangles, which describe the shape of the triangle.
Hyperspherical approaches do not use free-diatom functions as a basis set in the region
of the trimer minimum. Instead, they define an adiabatic basis set by solving a fixed-�
Schrödinger equation on a grid of values of the hyperradius �. There are several
different hyperspherical approaches available. The approach developed for reactive
scattering by Pack and Parker [87, 88] solves the angular problem using a finite-
element approach in adiabatically adjusting principal axis hyperspherical (APH)
coordinates and then solves the resulting radial coupled equations by propagation.
The approach developed by Esry and coworkers [58, 89] and used extensively for
three-body recombination in cold gases [58–60] solves the angular problem in slightly
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modified Smith–Whitten coordinates [86] using basis splines and then handles the radial
problem with a finite element approach. Both these methods use an optimized non-
uniform grid in the hyperangles. However, we chose to use an alternative approach
developed by Launay and LeDourneuf [90], which has been applied extensively to
chemical reactions such as N(2D)þH2 [91] and O(1D)þH2 [92] at higher energies.

In the approach of Launay and LeDorneuf, the configuration space is divided
into inner and outer regions, and the boundary between them is placed at a distance
(hyperradius) such that couplings due to the residual atom–diatom interaction can be
neglected outside the boundary. This distance is typically �¼ 45 to 60 a0 for the
alkali metal systems. In the inner region, the wavefunction for nuclear motion is
obtained by propagating a set of coupled differential equations using a diabatic-
by-sector algorithm. The angular basis set is obtained by diagonalizing a fixed-
hyperradius reference Hamiltonian in a primitive basis set of pseudo-hyperspherical
harmonics. In the outer region, the wavefunction is expanded in a basis set of diatom
vibration–rotation functions expressed in Jacobi coordinates [93]. The wavefunctions
in the outer region are computed by inwards integration of regular and irregular solu-
tions of an uncoupled radial Schrödinger equation which includes the isotropic part
of the atom–molecule interaction. Matching between wavefunctions for the inner and
outer regions yields the scattering S-matrix. Elastic and inelastic cross sections are
then calculated using standard formulae [51].

The size of the basis set required for convergence depends strongly on the masses
involved and the depth of the potential energy well. Before our calculations on alkali
metal systems, nearly all quantum scattering calculations had been on systems contain-
ing only one or occasionally two non-hydrogen atoms. Calculations on alkali metal
atoms require much bigger angular basis sets, though fortunately at low energies
only a few partial waves (values of J, the total angular momentum excluding spin)
are needed. Even for LiþLi2 [35], which is relatively light, the number of adiabatic
angular functions retained in the coupled equations ranged from 97 for J¼ 0 to 827
for J¼ 10, while for KþK2 [51] the range was from 250 for J¼ 0 to 1411 for J¼ 5.

One problem with hyperspherical methods is that the diatom functions become
more localized in hyperangular space as � increases. Because of this, the number of
hyperspherical harmonics needed for convergence increases with �: for KþK2 it
varied from 867 functions at small � to 6625 functions at the matching distance. It
is the calculation to build the adiabatic angular basis that dominates the computer
requirements (180 hours on an IBM Power4 P960 for KþK2).

A major advantage of the hyperspherical harmonics is that boson or fermion symme-
try is very easy to impose. The complete nuclear permutation group for a system with
three identical nuclei is S3. To satisfy the Pauli principle, the total wavefunction must
have A1 symmetry for bosonic nuclei or A2 symmetry for fermionic nuclei. The total
wavefunction is in general a sum of products of electronic, nuclear spin and nuclear
motion parts. For three atoms in their spin-stretched states, the nuclear spin wavefunc-
tion is totally symmetric. For such states, collisions take place entirely on the quartet
surface, for which the electronic wavefunction has A2 symmetry. Boson or fermion
symmetry can thus be imposed by selecting pseudo-hyperspherical harmonics to give
the correct symmetry for the wavefunction for nuclear motion. The adiabatic states
in each sector are obtained by a variational expansion on a basis of hyperspherical
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harmonics with A1 symmetry for bosonic atoms (with fermionic nuclei) and A2 symme-
try for fermionic atoms (with bosonic nuclei).

All the calculations were carried out on the quartet trimer surfaces, so are appropri-
ate for collisions of spin-polarized atoms and molecules. However, the basis functions
used for the quantum dynamics calculations did not explicitly include electron spin.
In a more complete treatment, the rotational quantum number n for the triplet dimer
would couple to its spin s¼ 1 to give a resultant j. When spin is neglected, however,
there is no distinction between n and j. The splittings between levels of the same n
but different j are in any case very small for the alkali metal dimers.

5.2. Homonuclear molecules

Quantum dynamics calculations have been carried out for the homonuclear collisions
Li þ Li2ðv ¼ 0 to 3Þ [35, 49], NaþNa2ðv ¼ 0 to 3Þ [46, 48] and KþK2ðv ¼ 1Þ [51].
For the Li and K systems, calculations were carried out for both bosonic and fermionic
isotopes.

The results for Li are typical. Figures 4 and 5 show elastic and inelastic cross sections
for bosons (7Li) and fermions (6Li) respectively. The elastic and inelastic s-wave cross
sections for 7Li are compared directly and extended to lower energy in figure 6.
It may be seen that at very low energies (below 100 mK for Li) the elastic cross sections
become independent of energy whereas the inelastic cross sections are proportional
to E�1=2

kin . This is in accordance with the Wigner threshold laws, which state that at
very low energy the partial cross sections (contributions from a single partial wave l)
for elastic and inelastic scattering vary as

�l
el � E2l

kin; �l
inel � El�1=2

kin : ð10Þ

For a long-range potential proportional to R�6, as for neutral atom–diatom scattering,
there is an l-independent term that dominates the threshold law for high l so that
�l
el � E3

kin for l � 2 [94].
It may be seen from figures 4 and 5 that below Ekin ¼ 100 mK the cross sections are

completely dominated by the l¼ 0 term, which corresponds to total angular momentum
J¼ 0 for bosons but J¼ 1 for fermions (because J ¼ lþ j and the lowest rotational
level of a triplet fermion dimer is j¼ 1). The energy-dependence of the inelastic rate
coefficient is k�inel where k ¼ ð2Ekin=�Þ

1=2, so that the inelastic rate is independent of
energy in this region.

Above Ekin ¼ 100 mK, the l¼ 0 contribution starts to deviate from the Wigner limit
and higher partial waves start to contribute. The point at which this happens depends
somewhat on mass, and is closer to 10 mK for KþK2 [51].

As described in section 2, it is known experimentally that fermion dimers produced
by Feshbach resonance tuning are very much stabler than boson dimers when the
scattering length is large. This stability was crucial in the production of molecular
Bose–Einstein condensates of 6Li2 [8, 9] and

40K2 [10]. Petrov et al. [33] explained the
stability in terms of the requirements of Fermi–Dirac statistics. However, their
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derivation is valid only for long-range molecular states. A very important question is
whether the stability persists for low-lying vibrational states of fermion dimers.

Cvitaš et al. [35] carried out quantum dynamics calculations for spin-polarized
collisions of ultracold homonuclear LiþLi2 collisions for both the bosonic (7Li) and fer-
mionic (6Li) cases. The results shown in figures 4 and 5 correspond to vibrational quench-
ing rates for v¼ 1 of kinel ¼ 5:6� 10�10 cm3 s�1 for bosons and 2:8� 10�10 cm3 s�1 for
fermions. However, the apparent difference of a factor of 2 is not significant: there
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Figure 4. Elastic cross sections (upper panel) and inelastic cross sections (lower panel) for 7Liþ 7Li2(vi¼ 1,
ji¼ 0), with contributions from individual partial waves (total angular momentum J, excluding spin). The
vertical lines indicate centrifugal barrier heights for l � 1. Reproduced from Cvitaš et al. [35].
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were differences of up to a factor of 8 between inelastic cross sections for different initial
values of v and j. Cvitaš et al. found no systematic difference between inelastic rates in the
boson and fermion cases, even when the atom–atom scattering length was adjusted to be
large and positive. This has important consequences for efforts to transfer the dimer
population from Feshbach resonance states to the vibrational ground state, v¼ 0:
it will be necessary to carry out the process either in a single step or quickly enough
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Figure 5. Elastic cross sections (upper panel) and inelastic cross sections (lower panel) for 6Liþ 6Li2(vi¼ 1,
ji¼ 1), with contributions from individual partial waves (total angular momentum J, excluding spin).
The vertical lines indicate centrifugal barrier heights for l � 1. Reproduced from Cvitaš et al. [35].
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that the molecules do not spend enough time in intermediate states to undergo inelastic
collisions.

The effective potential for a partial wave with l>0 is governed at long range by the
centrifugal and dispersion terms,

VlðRÞ ¼
�h2lðlþ 1Þ

2�R2
�
C6

R6
, ð11Þ

where C6 is the atom–diatom dispersion coefficient. There is thus a centrifugal barrier
at a distance

Rl
max ¼

6�C6

�h2lðlþ 1Þ

� �1=4
ð12Þ

with height

Vl
max ¼

�h2lðlþ 1Þ

�

� �3=2
ð54C6Þ

�1=2: ð13Þ

The resulting barrier heights are included in figures 4 and 5. The first vertical
line corresponds to the l¼ 1 partial wave and so on up to the l¼ 7 partial wave.
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Figure 6. Elastic and inelastic s-wave (J¼ 0) cross sections for 7Li þ 7Li2(vi¼ 1, ji¼ 0). The inset shows the
real and imaginary parts of the complex scattering length.
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It may be seen that each partial cross section has a maximum at an energy slightly
higher than the corresponding Vl

max. At collision energies below the centrifugal barrier,
the partial cross sections for each l follow Wigner laws given by equation (10). Above
the centrifugal barrier, the inelastic probabilities come close to their maximum value of
1 and the cross sections vary as E�1 because of the k�2 factor in the expression for the
cross section.

5.3. Capture model outside the ultracold regime

At high collision energy, when several partial waves are involved, the total inelastic rate
coefficient can be compared with that given by the classical Langevin capture model
[95], based on the idea that every collision that crosses the centrifugal barrier produces
inelasticity. This gives

�capture
inel ðEÞ ¼ 3�

C6

4E

� �1=3

;

kcaptureinel ðEÞ ¼ 3�
C6

4E

� �1=3
2E

�

� �1=2

¼
3�C1=3

6 E1=6

21=6�1=2
:

ð14Þ

This rate coefficient is shown as a function of collision energy for LiþLi2 in figure 7
and compared with the quenching rates for bosons and fermions initially in v¼ 1 and
2 [35]. It may be seen that the full quantum result approaches the Langevin value at
collision energies above about 10mK. Similar behaviour is seen for KþK2 at collision
energies above 0.1mK [51].

5.4. Product rotational distributions

The vibrational spacings of the alkali metal dimers are much larger than their rotational
spacings, so that many rotational levels are energetically accessible in collisions that
cause vibrational relaxation. For Na2, for example, rotational levels up to j¼ 20 are
energetically accessible at the energy of the v¼ 1 state (23.5 cm�1). All accessible
levels are populated in the products, subject to symmetry restrictions (only even-j
levels for bosons and odd-j levels for fermions). The product rotational distributions
for NaþNa2 ðv ¼ 1Þ at 10�4 K are shown in figure 8. There are three clear maxima
in the distribution, at j¼ 4, 12 and 18. The oscillations probably arise from a rotational
rainbow effect [96, 97]. The structure is similar to that observed in vibrational
predissociation of Van der Waals complexes [98]. In a classical impulsive model, the
energy released from Na2 vibration is partly retained in relative translation and
partly converted into Na2 rotation. The angular momentum imparted to the Na2
molecule is zero if the energy is released at a linear or T-shaped geometry, but large
around � ¼ 45�. In this model, the oscillations arise from interference between classical
trajectories on either side of the maximum.

The rotational distributions become constant at low energies but show structure
above 10�4 K. This is shown for KþK2 ðv ¼ 1Þ in figure 9. In this case levels up to
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Figure 7. [Colour online] Total inelastic rate coefficients for collisions of Li with Li2 (v¼ 1 and 2, with j¼ 0
for bosons and j¼ 1 for fermions). Reproduced from Cvitaš et al. [35].
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final rotational quantum number of 23Na2 ðv0 ¼ 0Þ. Reproduced from Soldán et al. [46].
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j¼ 24 are energetically accessible. Once again there is an oscillatory structure in the
product state distributions.

5.5. Potential sensitivity

The sensitivity of the cross sections to details of the potential energy surface is of great
importance. Soldán et al. [46] showed that including the non-additive part of the interac-
tion potential changed both elastic and inelastic cross sections for NaþNa2 ðv ¼ 1Þ by
more than a factor of 10. Quéméner et al. [48] investigated this in more detail: they
introduced a scaling factor � to multiply the non-additive term, so that �¼ 0 corresponds
to a pairwise-additive potential and �¼ 1 to the full non-additive potential. They then
investigated cross sections as a function of � for initial v¼ 1, 2 and 3. They found that
elastic and inelastic cross sections varied by a factor of 10 for v¼ 1 for variations of �
as small as 0.01 either side of �¼ 1. However, the variations became considerably smaller
for v¼ 2 and 3. Cvitaš et al. [49] have investigated similar effects for LiþLi2 at rather
higher energy resolution. For v¼ 0, the elastic cross sections show very sharp structure
as a function of � as shown in figure 10, caused by poles in the scattering length
each time there is a bound state at zero energy. However, the structure for v>0 is
weaker for both elastic and inelastic cross sections as shown in figure 11. This is due to
a general effect discussed by Hutson [99]: in the presence of inelastic scattering, the
poles in scattering lengths at the positions of zero-energy resonances are suppressed,
and the suppression increases with the degree of inelastic scattering.

5.6. Differential cross sections

At very low energies, cross sections are completely dominated by the l¼ 0 partial wave.
Under these circumstances, the scattering is completely isotropic and the differential
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Figure 9. Rotational distributions for 39K þ
39K2 ðv ¼ 1Þ as a function of the collision energy. The label

j 0 is the final rotational quantum number of 39K2 ðv0 ¼ 0Þ. Reproduced from Quéméner et al. [51].

Molecular collisions in ultracold atomic gases 21

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
0
4
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



cross sections are featureless. However, as the energy increases and higher partial waves
start to contribute, angular structure appears. Low-energy scattering thus offers
the opportunity to study the onset of angular behaviour in reactive cross sections.
The way that the angular behaviour develops is shown for KþK2 ðv ¼ 1Þ in
figure 12. At 1 mK the scattering is completely isotropic, but for 100 mK some angular
structure arising from interference between l¼ 0 and 1 is evident. At 0.1mK partial
waves up to l¼ 5 contribute and several peaks emerge.

5.7. Heteronuclear molecules

Heteronuclear molecules are particularly interesting because they offer the possibility of
studying reactive collisions separately from inelastic collisions. Homonuclear molecules
that are formed in their lowest vibration–rotation state are stable to collisions. For
heteronuclear molecules, however, the situation is more complicated. Even molecules
in their ground rovibrational states may not be stable against collisions. For example,
the spin-polarized reaction

6Li7Liðv ¼ 0, j ¼ 0Þ þ 7Li ! 6Liþ 7Li2ðv ¼ 0, j ¼ 0Þ ð15Þ

is exothermic by 1.822 K because of the difference between the zero-point energies of
the two dimers. However, the process

6Li7Liðv ¼ 0, j ¼ 0Þ þ 6Li ! 7Liþ 6Li2ðv ¼ 0, j ¼ 1Þ ð16Þ
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Figure 10. Dependence of the elastic cross sections for 7Liþ 7Li2ðvi ¼ 0, ji ¼ 0Þ at E¼ 0.928 nK on the
scaling factor � of the non-additive part of the potential. Reproduced from Cvitaš et al. [49].
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cannot occur at collision energies below 2.643K because of the combined effects
of zero-point energy and the need to form 6Li2 in j¼ 1 or higher to satisfy fermion
symmetry requirements.

Cvitaš et al. [50] have investigated the process (15) and the resulting elastic and
reactive cross sections are shown in figure 13. It may be seen that the reactive scattering
dominates over elastic scattering below 10 mK. The low-temperature reactive rate
coefficient is only 4:7� 10�12 cm3 s�1, which is reduced by a factor of about 50 from
those typical for vibrational relaxation in the homonuclear case. Cvitaš et al. attributed
the difference to the fact that there is only a single open channel for reaction (15).
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Figure 11. Dependence of the total elastic (upper panel) and inelastic (lower panel) cross sections for
7Liþ 7Li2ðvi, ji ¼ 0Þ for vi¼ 1, 2 and 3 and E¼ 0.928 nK on the scaling factor � of the non-additive part
of the potential. Reproduced from Cvitaš et al. [49].
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The results obtained in [50] have important implications. There is interest in produ-
cing a quantum gas of 6Li7Li in its ground rovibronic state in an ultracold mixture of
6Li and 7Li atoms. In order to stabilize the molecular cloud against two-body trap losses
induced by the reactive process (15), the remaining atomic 7Li would have to be
removed quickly after ground-state molecule production, so that just the two-species
fermionic mixture of 6Li7Liðv ¼ 0, j ¼ 0Þ molecules and 6Li atoms is left in the trap.
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Figure 12. Differential cross section for inelastic scattering of K þ K2 ðv ¼ 1Þ at 1 mK (dotted line), 100mK
(dashed line) and 0.1 mK (solid line). Reproduced from Quéméner et al. [51]
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from Cvitaš et al. [50].
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The 6Li cloud could be removed as well, but it might be advantageous to keep it in
the trap. Elastic s-wave collisions between fermionic 6Li7Li molecules will be strongly
suppressed, but low-energy collisions with 6Li can result only in elastic scattering and
might be used to achieve sympathetic cooling of the molecules.

5.8. Further extensions

Our work on the quantum dynamics of collisions of alkali metal dimers has so far
been restricted in several ways. We have focussed on collisions of molecules in low
vibrational states, for systems involving three chemically equivalent atoms. We
have restricted ourselves to collisions of spin-stretched atoms and molecules, for
which doublet electronic states do not contribute. We have neglected hyperfine
structure, and worked in zero applied field.

Extending the calculations to handle heteronuclear systems is relatively straightfor-
ward, though a considerable amount of work is needed to develop potential energy
surfaces for each system of interest. Dynamical calculations are more expensive for
heavier atoms and for systems of lower symmetry (and the calculations described
here already push the limits of current computers). Extending the calculations to
higher vibrational states is also mostly a matter of computer time, though true
long-range states very near dissociation may be difficult or impossible to converge
with our current scattering methods.

Including the effects of nuclear spin and magnetic fields is a very difficult task,
though an important one if we are to explore atom–molecule Feshbach resonances
and use them to control molecular interactions in the same way as atomic interactions.
Collisions of atoms and molecules in non-spin-stretched states will be particularly
challenging, because they will involve doublet surfaces as well as quartet surfaces,
and for alkali metal trimers the doublet surfaces exhibit conical intersections and
geometric phase effects [100, 101] that considerably complicate the dynamics.

6. Conclusions

This article focussed on theoretical studies of collisions between spin-polarized alkali
metal dimers and atoms, which are crucial in experiments designed to form ultracold
molecules in low-lying vibrational states. Colliding dimers can undergo very fast
barrierless chemical reactions. As a result, vibrationally excited molecules undergo
very fast vibrational relaxation, with rates usually in excess of kinel ¼ 10�10 cm3 s�1.
At temperatures above about 1mK, where several partial waves contribute, the rates
are approximately given by a statistical Langevin capture model. At lower tempera-
tures, however, the reactions enter a regime governed by Wigner threshold laws and
a full quantum-dynamical treatment is essential to calculate the rates. In this regime
the results are very sensitive to details of the triatomic potential energy surfaces,
though the sensitivity decreases for excited vibrational levels. Isotopically heteronuclear
molecules can often undergo exothermic reactions even from their ground vibrational
states, because of the difference in zero-point energy between reactants and products.
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Prospects for the future include the production of quantum-degenerate gases of
ground-state molecules, which will be stable to collisions and offer a wealth of new
possibilities for quantum control. Heteronuclear molecules are particularly interesting,
because they can have substantial dipole moments in short-range states. Dipolar
quantum gases offer a new range of novel properties, and ultracold polar molecules
also have potential applications in quantum computing and in studying fundamental
physical properties such as parity violation and the electron dipole moment.
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[65] H.-J. Werner, P. J. Knowles, R. Lindh, M. Schütz, P. Celani, T. Korona, F. R. Manby, G. Rauhut,

R. D. Amos, A. Bernhardsson, et al., Molpro, version 2002.6, a package of ab initio programs, 2003,
see http://www.molpro.net.
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